
Programming Language Processors in Java:
Compilers and Interpreters

By David Watt, Deryck Brown

Programming Language Processors in Java: Compilers and Interpreters By
David Watt, Deryck Brown

This book provides a gently paced introduction to techniques for implementing
programming languages by means of compilers and interpreters, using the
object-oriented programming language Java. The book aims to exemplify good
software engineering principles at the same time as explaining the specific
techniques needed to build compilers and interpreters.

 Download Programming Language Processors in Java: Compilers ...pdf

 Read Online Programming Language Processors in Java: Compile ...pdf

http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869

Programming Language Processors in Java: Compilers and
Interpreters

By David Watt, Deryck Brown

Programming Language Processors in Java: Compilers and Interpreters By David Watt, Deryck Brown

This book provides a gently paced introduction to techniques for implementing programming languages by
means of compilers and interpreters, using the object-oriented programming language Java. The book aims
to exemplify good software engineering principles at the same time as explaining the specific techniques
needed to build compilers and interpreters.

Programming Language Processors in Java: Compilers and Interpreters By David Watt, Deryck
Brown Bibliography

Sales Rank: #486678 in Books●

Published on: 2000-02-14●

Original language: English●

Number of items: 1●

Dimensions: 9.30" h x 1.20" w x 6.90" l, 1.96 pounds●

Binding: Hardcover●

436 pages●

 Download Programming Language Processors in Java: Compilers ...pdf

 Read Online Programming Language Processors in Java: Compile ...pdf

http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869
http://youkof.club/go/read.php?id=0130257869

Download and Read Free Online Programming Language Processors in Java: Compilers and
Interpreters By David Watt, Deryck Brown

Editorial Review

From the Back Cover

David A Watt and Deryck F Brown

Programming Language Processors in Java

Compilers and Interpreters

This book provides a gently paced introduction to techniques for implementing programming languages by
means of compilers and interpreters, using the object-oriented programming language Java. The book aims
to exemplify good software engineering principles at the same time as explaining the specific techniques
needed to build compilers and interpreters.

Features

* The book shows clearly how a simple compiler can be decomposed into a syntactic analyzer, a contextual
analyzer, and a code generator, communicating via an abstract syntax tree.

* The book is accompanied by a complete working compiler and interpreter, provided via the Internet, and
free of charge for educational use.

* The book contains numerous exercises, together with sample answers to selected exercises. It also contains
a number of suggested projects, involving extensions to the accompanying compiler.

* All examples in the book are expressed in Java, and the compiler and interpreter are structured using
object-oriented design patterns.

David Watt teaches algorithms and data structures, programming languages, and software design. Deryck
Brown teaches compilers, object-oriented programming, operating systems, and software engineering.

About the Author

DAVID WATT teaches algorithms and data structures, programming language, and software design.

DERYCK BROWN teaches compilers, object-oriented programming, operating systems, and software
engineering.

Excerpt. © Reprinted by permission. All rights reserved.

Preface

The subject of this book is the implementation of programming languages. Programming language
processors are programs that process other programs. The primary examples of language processors are
compilers and interpreters.

Programming languages are of central importance in computer science. They are the most fundamental tools
of software engineers, who are completely dependent on the quality of the language processors they use.
There is an interplay between the design of programming languages and computer instruction sets: compilers
must bridge the gap between high-level languages and machine code. And programming language design
itself raises strong feelings among computer scientists, as witnessed by the proliferation of language
paradigms. Imperative and object-oriented languages are currently dominant in terms of actual usage, and it
is on the implementation of such languages that this book focuses.

Programming language implementation is a particularly fascinating topic, in our view, because of its close
interplay between theory and practice. Ever since the dawn of computer science, the engineering of language
processors has driven, and has been vastly improved by, the development of relevant theories.

Nowadays, the principles of programming language implementation are very well understood. An
experienced compiler writer can implement a simple programming language about as fast as he or she can
type. The basic techniques are simple yet effective, and can be lucidly presented to students. Once the
techniques have been mastered, building a compiler from scratch is essentially an exercise in software
engineering.

A textbook example of a compiler is often the first complete program of its size seen by computer science
students. Such an example should therefore be an exemplar of good software engineering principles.
Regrettably, many compiler textbooks offend these principles. This textbook, based on a total of about
twenty-five years' experience of teaching programming language implementation, aims to exemplify good
software engineering principles at the same time as explaining the specific techniques needed to build
compilers and interpreters.

The book shows how to design and build simple compilers and interpreters using the object-oriented
programming language Java. The reasons for this choice are twofold. First, object-oriented methods have
emerged as a dominant software engineering technology, yielding substantial improvements in software
modularity, maintainability, and reusability. Secondly, Java itself has experienced a prodigious growth in
popularity since its appearance as recently as 1994, and that for good technical reasons: Java is simple,
consistent, portable, and equipped with an extremely rich class library. Soon we can expect all computer
science students to have at least some familiarity with Java. A Programming Languages Series

This is the fourth of a series of books on programming languages:

Programming Language Concepts and Paradigms●

Programming Language Syntax and Semantics●

Programming Language Processors●

Programming Language Processors in Java●

Programming Language Concepts and Paradigms studies the concepts underlying programming languages,
and the major language paradigms that use these concepts in different ways; in other words, it is about
language design. Programming Language Syntax and Semantics shows how we can formally specify the
syntax (form) and semantics (meaning) of programming languages. Programming Language Processors
studies the implementation of programming languages, examining language processors such as compilers
and interpreters, and using Pascal as the implementation language. Programming Language Processors in
Java likewise studies the implementation of programming languages, but now using Java as the
implementation language and object-oriented design as the engineering principle; moreover, it introduces
basic techniques for implementing object-oriented languages.

This series attempts something that has not previously been achieved, as far as we know: a broad study of all
aspects of programming languages, using consistent terminology, and emphasizing connections likely to be
missed by books that deal with these aspects separately. For example, the concepts incorporated in a
language must be defined precisely in the language's semantic specification. Conversely, a study of
semantics helps us to discover and refine elegant and powerful new concepts, which can be incorporated in
future language designs. A language's syntax underlies analysis of source programs by language processors;
its semantics underlies object code generation and interpretation. Implementation is an important
consideration for the language designer, since a language that cannot be implemented with acceptable
efficiency will not be used.

The books may be read as a series, but each book is sufficiently self-contained to be read on its own, if the
reader prefers.

Content of this Book

Chapter 1 introduces the topic of the book. It reviews the concepts of high-level programming languages,
and their syntax, contextual constraints, and semantics. It explains what a language processor is, with
examples from well-known programming systems.

Chapter 2 introduces the basic terminology of language processors: translators, compilers, interpreters,
source and target languages, and real and abstract machines. It goes on to study interesting ways of using
language processors: interpretive compilers, portable compilers, and bootstrapping. In this chapter we view
language processors as 'black boxes.' In the following chapters we look inside these black boxes.

Chapter 3 looks inside compilers. It shows how compilation can be decomposed into three principal phases:
syntactic analysis, contextual analysis, and code generation. It also compares different ways of designing
compilers, leading to one-pass and multi-pass compilation.

Chapter 4 studies syntactic analysis in detail. It decomposes syntactic analysis into scanning, parsing, and
abstract syntax tree construction. It introduces recursive-descent parsing, and shows how a parser and
scanner can be systematically constructed from the source language's syntactic specification.

Chapter 5 studies contextual analysis in detail, assuming that the source language exhibits static bindings and
is statically typed. The main topics are identification, which is related to the language's scope rules, and type
checking, which is related to the language's type rules.

Chapter 6 prepares for code generation by discussing the relationship between the source language and the
target machine. It shows how target machine instructions and storage must be marshaled to support the
higher-level concepts of the source language. The topics covered include data representation, expression
evaluation, storage allocation, routines and their arguments, garbage collection, and the run-time
organization of simple object-oriented languages.

Chapter 7 studies code generation in detail. It shows how to organize the translation from source language to
object code. It relates the selection of object code to the semantics of the source language. As this is an
introductory textbook, only code generation for a stack-based target machine is covered. (The more difficult
topics of code generation for a register-based machine, and code transformations are left to more advanced
textbooks.)

Chapter 8 looks inside interpreters. It gives examples of interpreters for both low-level and high-level
languages.

Chapter 9 concludes the book. It places the implementation of a programming language in the context of the
language's life cycle, along with design and specification. It also discusses quality issues, namely error
reporting and efficiency.

There are several possible orders for studying the main topics of this book. The chapter on interpretation can
be read independently of the chapters on compilation. Within the latter, the chapters on syntactic analysis,
contextual analysis, and code generation can be read in any order.

Examples and Case Studies

The methods described in this textbook are freely illustrated by examples. In Chapter 2, the examples are of
language processors for real programming languages. In the remaining chapters, most examples are based on
smaller languages, in order that the essential points can be conveyed without the reader getting lost in detail.

A complete programming language is a synthesis of numerous concepts, which often interact with one
another in quite complicated ways. It is important that the reader understands how we cope with these
complications in implementing a complete programming language. For this purpose we use the programming
language Triangle as a case study. An overview of Triangle is given in Section 1.4. A reader already familiar
with a Pascal-like language should have no trouble in reading Triangle programs. A complete specification
of Triangle is given in Appendix B; this includes a formal specification of its syntax, but is otherwise
informal.

We designed Triangle for two specific purposes: to illustrate how a programming language can be formally
specified (in the companion textbook Programming Language Syntax and Semantics), and to illustrate how a
programming language can be implemented. Ideally we would use a real programming language, such as
Pascal or Java, for these purposes. In practice, however, real languages are excessively complicated. They
contain many features that are tedious but unilluminating to specify and to implement. Although Triangle is a
model language, it is rich enough to write interesting programs and to illustrate basic methods of
specification and implementation. Finally, it can readily be extended in various ways (such as adding new
types, new control structures, or packages), and such extensions are a basis for a variety of projects.

Educational Software

A Triangle language processor is available for educational use in conjunction with this textbook. The
Triangle language processor consists of: a compiler for Triangle, which generates code for TAM (Triangle
Abstract Machine); an interpreter for TAM; and a disassembler for TAM. The tools are written entirely in
Java, and will run on any computer equipped with a JVM (Java Virtual Machine). You can download the
Triangle language processor from our Web site:

www.dcs.gla.ac.uk/-daw/books/PLPJ/

Exercises and Projects

Each chapter of this book is followed by a number of relevant exercises. These vary from short exercises,
through longer ones (marked *), up to truly demanding ones (marked **) that could be treated as projects.

A typical exercise is to apply the methods of the chapter to a very small toy language, or a minor extension
of Triangle.

A typical project is to implement some substantial extension to Triangle. Most of the projects are gathered
together at the end of Chapter 9; they require modifications to several parts of the Triangle compiler, and
should be undertaken only after reading up to Chapter 7 at least.

Readership

This book and its companions are aimed at junior, senior, and graduate students of computer science and
information technology, all of whom need some understanding of the fundamentals of programming
languages. The books should also be of interest to professional software engineers, especially project leaders
responsible for language evaluation and selection, designers and implementors of language processors, and
designers of new languages and extensions to existing languages.

The basic prerequisites for this textbook are courses in programming and data structures, and a course in
programming languages that covers at least basic language concepts and syntax. The reader should be
familiar with Java, and preferably at least one other high-level language, since in studying implementation of
programming languages it is important not to be unduly influenced by the idiosyncrasies of a particular
language. All the algorithms in this textbook are expressed in Java.

The ability to read a programming language specification critically is an essential skill. A programming
language implementor is forced to explore the entire language, including its darker corners. (The ordinary
programmer is wise to avoid these dark corners!) The reader of this textbook will need a good knowledge of
syntax, and ideally some knowledge of semantics; these topics are briefly reviewed in Chapter 1 for the
benefit of readers who might lack such knowledge. Familiarity with BNF and EBNF (which are commonly
used in language specifications) is essential, because in Chapter 4 we show how to exploit them in syntactic
analysis. No knowledge of formal semantics is assumed.

The reader should be comfortable with some elementary concepts from discrete mathematics – sets and
recursive functions – as these help to sharpen understanding of, for example, parsing algorithms. Discrete
mathematics is essential for a deeper understanding of compiler theory; however, only a minimum of
compiler theory is presented in this book.

This book and its companions attempt to cover all the most important aspects of a large subject. Where
necessary, depth has been sacrificed for breadth. Thus the really serious student will need to follow up with
more advanced studies. Each book has an extensive bibliography, and each chapter closes with pointers to
further reading on the topics covered by the chapter.

Acknowledgments

Most of the methods described in this textbook have long since passed into compiler folklore, and are almost
impossible to attribute to individuals. Instead, we shall mention people who have particularly influenced us
personally.

For providing a stimulating environment in which to think about programming language issues, we are

grateful to colleagues in the Department of Computing Science at the University of Glasgow, in particular
Malcolm Atkinson, Muffy Calder, Quintin Cutts, Peter Dickman, Bill Findlay, John Hughes, John
Launchbury, Hermano Moura, John Patterson, Simon Peyton Jones, Fermin Reig, Phil Trinder, and Phil
Wadler. We have also been strongly influenced, in many different ways, by the work of Peter Buneman,
Luca Cardelli, Edsger Dijkstra, Jim Gosling, Susan Graham, Tony Hoare, Jean Ichbiah, Mehdi Jazayeri,
Robin Milner, Peter Mosses, Atsushi Ohori, Bob Tennent, Jim Welsh, and Niklaus Wirth.

We wish to thank the reviewers for reading and providing valuable comments on an earlier draft of this book.
Numerous cohorts of undergraduate students taking the Programming Languages 3 module at the University
of Glasgow made an involuntary but essential contribution by class-testing the Triangle language processor,
as have three cohorts of students taking the Compilers module at the Robert Gordon University.

We are particularly grateful to Tony Hoare, editor of the Prentice Hall International Series in Computer
Science, for his encouragement and advice, freely and generously offered when these books were still at the
planning stage. If this book is more than just another compiler textbook, that is partly due to his suggestion to
emphasize the connections between compilation, interpretation, and semantics.

D.A.W.
D.F.B.
Glasgow and Aberdeen
July 1999

Users Review

From reader reviews:

Susan Arnold:

The book Programming Language Processors in Java: Compilers and Interpreters make one feel enjoy for
your spare time. You need to use to make your capable much more increase. Book can for being your best
friend when you getting strain or having big problem with your subject. If you can make reading a book
Programming Language Processors in Java: Compilers and Interpreters to become your habit, you can get far
more advantages, like add your personal capable, increase your knowledge about some or all subjects. You
could know everything if you like open and read a reserve Programming Language Processors in Java:
Compilers and Interpreters. Kinds of book are several. It means that, science reserve or encyclopedia or other
individuals. So , how do you think about this e-book?

Warner Samuels:

This Programming Language Processors in Java: Compilers and Interpreters are reliable for you who want to
become a successful person, why. The reason of this Programming Language Processors in Java: Compilers
and Interpreters can be one of the great books you must have is giving you more than just simple reading
through food but feed you with information that maybe will shock your prior knowledge. This book is
usually handy, you can bring it just about everywhere and whenever your conditions throughout the e-book
and printed types. Beside that this Programming Language Processors in Java: Compilers and Interpreters
forcing you to have an enormous of experience for instance rich vocabulary, giving you trial run of critical
thinking that could it useful in your day action. So , let's have it appreciate reading.

Eddie Barber:

Reading a book to become new life style in this season; every people loves to examine a book. When you go
through a book you can get a great deal of benefit. When you read publications, you can improve your
knowledge, mainly because book has a lot of information into it. The information that you will get depend on
what kinds of book that you have read. If you wish to get information about your review, you can read
education books, but if you want to entertain yourself read a fiction books, this kind of us novel, comics, and
also soon. The Programming Language Processors in Java: Compilers and Interpreters offer you a new
experience in reading through a book.

Ruth Little:

E-book is one of source of expertise. We can add our information from it. Not only for students and also
native or citizen want book to know the upgrade information of year for you to year. As we know those
guides have many advantages. Beside many of us add our knowledge, may also bring us to around the world.
From the book Programming Language Processors in Java: Compilers and Interpreters we can consider more
advantage. Don't one to be creative people? To become creative person must like to read a book. Only
choose the best book that ideal with your aim. Don't always be doubt to change your life with this book
Programming Language Processors in Java: Compilers and Interpreters. You can more attractive than now.

Download and Read Online Programming Language Processors in
Java: Compilers and Interpreters By David Watt, Deryck Brown
#6A5J9USYFNM

Read Programming Language Processors in Java: Compilers and
Interpreters By David Watt, Deryck Brown for online ebook

Programming Language Processors in Java: Compilers and Interpreters By David Watt, Deryck Brown Free
PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books,
books online, book reviews epub, read books online, books to read online, online library, greatbooks to read,
PDF best books to read, top books to read Programming Language Processors in Java: Compilers and
Interpreters By David Watt, Deryck Brown books to read online.

Online Programming Language Processors in Java: Compilers and Interpreters By
David Watt, Deryck Brown ebook PDF download

Programming Language Processors in Java: Compilers and Interpreters By David Watt, Deryck
Brown Doc

Programming Language Processors in Java: Compilers and Interpreters By David Watt, Deryck Brown Mobipocket

Programming Language Processors in Java: Compilers and Interpreters By David Watt, Deryck Brown EPub

